Data Centre Forecast

How Cloud Computing Impacts Data Center Design

Created by: Global Data Center Engineering

Global Data Center Engineering 2015 ©

Cloud Computing – What is it?

If Your Cloud Computing Initiative Looks like this...

You're Doing It Wrong

Why Cloud Isn't Cloudy

- The mystery of the Cloud is rapidly dissolving
- No, the Cloud is not new, but it is now more accessible to the masses
- Deployment of applications and services happens in minutes instead of days or weeks
- It provides access to what we need, when we need it, and how we want it

Yes, Now – IT as a Service

- Demand for instant answers to complex questions has become the standard
- Enterprise (from tiny to colossal) have low cost access to substantial computing muscle
- Pace of evolution from legacy IT infrastructure continues to increase
- Private, Public, Hybrid and Vertical Clouds are linking, providing clear visibility through fog

The CPU Transistors and Moore's Law at Work

Day	Rate	Total Pay		Year	Transistor Count	Commercial Comparison (Intel)
1	\$0.01	\$0.01		1965	280	First IC Etching ~280 transistors
2	\$0.02	\$0.03		1967	560	
3	\$0.04	\$0.07		1969	1,120	
4	\$0.08	\$0.15		1971	2,240	Intel 4004 first single chip CPU
5	\$0.16	\$0.31		1973	4,480	8008
6	\$0.32	\$0.63		1975	8,960	8080
7	\$0.64	\$1.27	Week 1	1977	17,920	8086
8	\$1.28	\$2.55		1979	35,840	8088
9	\$2.56	\$5.11		1981	71,680	80186
10	\$5.12	\$10.23		1983	143,360	80286 (1982)
11	\$10.24	\$20.47		1985	286,720	80386 (1986)
12	\$20.48	\$40.95		1987	573,440	80386 (1987 version)
13	\$40.96	\$81.91		1989	1,146,880	80486
14	\$81.92	\$163.83	Week 2	1991	2,293,760	80486SX
15	\$163.84	\$327.67		1993	4,587,520	Pentium I (1994)
16	\$327.68	\$655.35		1995	9,175,040	Pentium Pro
17	\$655.36	\$1,310.71		1997	18,350,080	Pentium II
18	\$1,310.72	\$2,621.43		1999	36,700,160	Pentium III
19	\$2,621.44	\$5,242.87		2001	73,400,320	Pentium IV (2000)
20	\$5,242.88	\$10,485.75		2003	146,800,640	Pentium IV
21	\$10,485.76	\$20,971.51	🗖 Week 3	2005	293,601,280	Core2Duo
22	\$20,971.52	\$41,943.03		2007	587,202,560	Core2Quad
23	\$41,943.04	\$83,886.07		2009	1,174,405,120	i7 Extreme
24	\$83,886.08	\$167,772.15		2011	2,348,810,240	Xeon E7 2870
25	\$167,772.16	\$335,544.31		2013	4,697,620,480	Xeon E7 8893
26	\$335,544.32	\$671,088.63		2015	9,395,240,960	<future></future>
27	\$671,088.64	\$1,342,177.27		2017	18,790,481,920	<future></future>
28	\$1,342,177.28	\$2,684,354.55	Week 4	2019	37,580,963,840	<future></future>

8,388,608x More Powerful than 1965

CPU Transistor Grown and Impact

CPU Transistor Growth Projected to 2019

CPU – Bringing It All Together

CPU Transistors, Cores and Watts Projected to 2019

CPU Evolution – Watt Does It Mean

- CPU Innovations Result in:
 - More compute power in less physical space
 - > More Cores in a single chip
 - > More CPUs supported per board (4 instead of 1 or 2)
 - Improved Energy Efficiency
 - > Chips utilize less energy than their predecessors
 - > Less heat is generated, requiring less cooling
 - Chips have higher heat tolerance, allowing higher operating temperatures

Space, Heat and Power Dichotomy

Server Trends

Past

- In the past, servers and storage were coupled
- Server consumed 4U (rack Units) or rack space
- Held one to two CPUs with 2 to 4 Cores

Present

- Most servers coupled with boot device
- Servers consume 1U to 2U rack space
- Hold one to four CPUs with 2 to 6 Cores
- Some blade server implementations

Server Trends (Continued)

- Future
 - Microservers (12 + servers in 3U) replace blades
 - Single-Chip Cloud Computers replace DC rooms
 - Storage and boot separates from physical server
 - Memory separates from physical server
 - Processor power becomes 1,000,000 million times more powerful by 2019 than it was in 1980
 - Power to CPU ratio declines significantly as chip cores reach into the thousands on a single CPU

Storage and the Cloud

If your storage grows on trees...

You're Doing It Wrong

The History of Data Storage

- Storage has evolved through a number of stages:
 - Punched Cards & Vacuum ed Tubes 1936 (bits)
 - Drum and Core Memory 1951 (Bytes)
 - Disk Can and Floppy Drives 1969 (Kilobytes)
 - Tape and Early Hard Disk 1980 (Megabytes)
 - Hard disk and USB Sticks 1993 (Gigabytes)
 - Modern Hard Disk 2007 (Terabytes)

When Storage Grew on Trees

- Modern base measure for data storage is the Terabyte (1,000 billion bytes or 2^40 bytes = 1,099,511,627,776 bytes)
- Unlike Moore's Law, storage does not follow the same doubling every 2 years.
- Storage does follow a capacity trend:
 - Factor of 10 increase approximately every 14 years
 - That puts petabyte drives on target for 2021

The Direction of Storage Capability

Media Type	Height (<mark>mm</mark> /in)	Weight (<mark>kg/lbs</mark>)	Storage Capacity (bytes)	Quantity needed for 1TB	Weight Needed for 1TB (kg/lbs)	Volume to Store	Comparison - Distance	Comparison - Weight
Punched	0.178	0.00242	120	9,162,596,898	22,173,484	1630 Kilometers		120 Blue Whales
Card	0.007	0.005335			48,882,454	994 Miles		
	12.65	1.1339	178,257,920	6,168	6,994	78 Meter	3 1/4 Tennis Courts end-to-end	Large African Elephant
9 Track Tape	0.498	2.5			15,420	256 Feet		
5 1/4 Full	82.55	2.2679	640,000,000	1,718	3,896	142 Meter	38 Story Building	Hippopotamus
Height HDD	3.25	5			8,590	466 Feet		
3 1/2 IN 1TB	26.1	0.622	1,000,000,000,000	1	0.6220	2.6CM	Cheesburger	Hard Back
HDD	1.027	1.371			1.3710	1.027IN		Book 350 Pages
	1	0.0002	128,000,000,000	8	0.00160	83.2CM	5 Credit Cards	8 Fingernails (not the pinky)
MicroSD	0.0393	0.001102311			0.00842	32.75IN		

Since 2007 the ability to generate data has exceeded existing capacity to store it

- A faster and larger storage capacity is required

Storage Trends

- Spinning Hard Disks (HDD) are on the way out
- Advancements in capacity have stalled in recent years as drive manufacturers retool and reinvent for Solid State Drive (SSD)
- Capability for capacity reaching 10's or 100's of Gigabytes is easily achievable
- SSD technology is superior to HDD in every way (Speed, Capacity Potential, Durability)

That's Nice, But How Does This Impact the Cloud, and the DC?

- Cloud will become more about storage capacity than processing power
- In the past, rack space was dominated by servers (4 to 1), in the future, storage racks will outnumber server racks (2 to 1)
- Single Chip Cloud Computing, with potential for 1,000+ cores will replace entire DC halls with 2 or 3 servers (for redundancy)

DC and Cloud Impact

- Leading driver of data centre build is Cloud service offerings
- CPU technology has started a trend of increased cores, with decreasing energy consumption
- CPUs are more tolerant to higher heat than in the past
- The move from HDD to SSD further improves the state of the DC

DC and Cloud Impact (Continued)

- HDD is one of the most sensitive components to heat in the DC (5c to 55c)
- SSD generates little heat of its own (no moving components) reducing the overall heat generated in the DC, and is highly tolerant of greater operating temperatures (0c to 70c)
- SSD utilizes 2w to 8w during idle and usage time; HDD consumes 10w to 12w
- Storage will take a larger footprint of data centre floor space

DC's – The Next Convenience Store

- Modular and Micro Modular Data Centres are a reality now
- They can be rapidly deployed to any location with sufficient power
- Latency and user demand will drive the need for closer proximity Data Centres

Thank you

