# Data Centre Forecast <br> How Cloud Computing Impacts Data Center Design 

Created by:
Global Data Center Engineering

## Cloud Computing - What is it?



If Your Cloud Computing Initiative Looks like this...

## You're Doing It Wrong

## Why Cloud Isn't Cloudy

- The mystery of the Cloud is rapidly dissolving
- No, the Cloud is not new, but it is now more accessible to the masses
- Deployment of applications and services happens in minutes instead of days or weeks
- It provides access to what we need, when we need it, and how we want it


## Yes, Now - IT as a Service

- Demand for instant answers to complex questions has become the standard
- Enterprise (from tiny to colossal) have low cost access to substantial computing muscle
- Pace of evolution from legacy IT infrastructure continues to increase
- Private, Public, Hybrid and Vertical Clouds are linking, providing clear visibility through fog


## The CPU Transistors and Moore's Law at Work

| Day | Rate | Total Pay |
| :---: | ---: | ---: |
| 1 | $\$ 0.01$ | $\$ 0.01$ |
| 2 | $\$ 0.02$ | $\$ 0.03$ |
| 3 | $\$ 0.04$ | $\$ 0.07$ |
| 4 | $\$ 0.08$ | $\$ 0.15$ |
| 5 | $\$ 0.16$ | $\$ 0.31$ |
| 6 | $\$ 0.32$ | $\$ 0.63$ |
| 7 | $\$ 0.64$ | $\$ 1.27$ |
| 8 | $\$ 1.28$ | $\$ 2.55$ |
| 9 | $\$ 2.56$ | $\$ 5.11$ |
| 10 | $\$ 5.12$ | $\$ 10.23$ |
| 11 | $\$ 10.24$ | $\$ 20.47$ |
| 12 | $\$ 20.48$ | $\$ 40.95$ |
| 13 | $\$ 40.96$ | $\$ 81.91$ |
| 14 | $\$ 81.92$ | $\$ 163.83$ |
| 15 | $\$ 163.84$ | $\$ 327.67$ |
| 16 | $\$ 327.68$ | $\$ 655.35$ |
| 17 | $\$ 655.36$ | $\$ 1,310.71$ |
| 18 | $\$ 1,310.72$ | $\$ 2,621.43$ |
| 19 | $\$ 2,621.44$ | $\$ 5,242.87$ |
| 20 | $\$ 5,242.88$ | $\$ 10,485.75$ |
| 21 | $\$ 10,485.76$ | $\$ 20,971.51$ |
| 22 | $\$ 20,971.52$ | $\$ 41,943.03$ |
| 23 | $\$ 41,943.04$ | $\$ 83,886.07$ |
| 24 | $\$ 83,886.08$ | $\$ 167,772.15$ |
| 25 | $\$ 167,772.16$ | $\$ 335,544.31$ |
| 26 | $\$ 335,544.32$ | $\$ 671,088.63$ |
| 27 | $\$ 671,088.64$ | $\$ 1,342,177.27$ |
| 28 | $\$ 1,342,177.28$ | $\$ 2,684,354.55$ |

## \$2,684,354.55

| Year | Transistor Count | Commercial Comparison (Intel) |
| :--- | ---: | :--- |
| 1965 | 280 | First IC Etching ~280 transistors |
| 1967 | 560 |  |
| 1969 | 1,120 |  |
| 1971 | 2,240 | Intel 4004 first single chip CPU |
| 1973 | 4,480 | 8008 |
| 1975 | 8,960 | 8080 |
| 1977 | 17,920 | 8086 |
| 1979 | 35,840 | 8088 |
| 1981 | 71,680 | 80186 |
| 1983 | 143,360 | 80286 (1982) |
| 1985 | 286,720 | 80386 (1986) |
| 1987 | 573,440 | 80386 (1987 version) |
| 1989 | $1,146,880$ | 80486 |
| 1991 | $2,293,760$ | 80486 SX |
| 1993 | $4,587,520$ | Pentium I (1994) |
| 1995 | $9,175,040$ | Pentium Pro |
| 1997 | $18,350,080$ | Pentium II |
| 1999 | $36,700,160$ | Pentium III |
| 2001 | $73,400,320$ | Pentium IV (2000) |
| 2003 | $146,800,640$ | Pentium IV |
| 2005 | $293,601,280$ | Core2Duo |
| 2007 | $587,202,560$ | Core2Quad |
| 2009 | $1,174,405,120$ | i7 Extreme |
| 2011 | $2,348,810,240$ | Xeon E7 2870 |
| 2013 | $4,697,620,480$ | Xeon E7 8893 |
| 2015 | $9,395,240,960$ | $<$ Future> |
| 2017 | $18,790,481,920$ | $<$ Future> |
| 2019 | $37,580,963,840$ | $<$ Future> |
|  |  |  |
|  |  |  |

## 8,388,608x More Powerful than 1965

## CPU Transistor Grown and Impact



## CPU - Bringing It All Together

CPU Transistors, Cores and Watts Projected to 2019


## CPU Evolution - Watt Does It Mean

- CPU Innovations Result in:
- More compute power in less physical space
> More Cores in a single chip
> More CPUs supported per board (4 instead of 1 or 2 )
- Improved Energy Efficiency
, Chips utilize less energy than their predecessors
> Less heat is generated, requiring less cooling
> Chips have higher heat tolerance, allowing higher operating temperatures


## Space, Heat and Power Dichotomy



## Server Trends

- Past
- In the past, servers and storage were coupled
- Server consumed 4U (rack Units) or rack space
- Held one to two CPUs with 2 to 4 Cores
- Present
- Most servers coupled with boot device
- Servers consume 1 U to 2 U rack space
- Hold one to four CPUs with 2 to 6 Cores
- Some blade server implementations


## Server Trends (Continued)

- Future
- Microservers (12 + servers in 3U) replace blades
- Single-Chip Cloud Computers replace DC rooms
- Storage and boot separates from physical server
- Memory separates from physical server
- Processor power becomes 1,000,000 million times more powerful by 2019 than it was in 1980
- Power to CPU ratio declines significantly as chip cores reach into the thousands on a single CPU


## Storage and the Cloud

If your storage grows on trees...


You're Doing It Wrong

## The History of Data Storage

- Storage has evolved through a number of stages:
- Punched Cards \& Vacuumed Tubes 1936 (bits)
- Drum and Core Memory 1951 (Bytes)
- Disk Can and Foppy Drives 1969 (Kilobytes)
- Tape and Early Hard Disk 1980 (Megabytes)
- Hard disk and USB Sticks 1993 (Gigabytes)
- Modern Hard Disk 2007 (Terabytes)


## When Storage Grew on Trees

- Modern base measure for data storage is the Terabyte (1,000 billion bytes or $2^{\wedge} 40$ bytes $=1,099,511,627,776$ bytes)
- Unlike Moore's Law, storage does not follow the same doubling every 2 years.
- Storage does follow a capacity trend:
- Factor of 10 increase approximately every 14 years
- That puts petabyte drives on target for 2021


## The Direction of Storage Capability

| Media Type | Height (mm/in) | Weight (kg/lbs) | Storage Capacity (bytes) | $\begin{gathered} \hline \text { Quantity } \\ \text { needed for } \\ \text { 1TB } \\ \hline \end{gathered}$ | Weight Needed for 1TB (kg/lbs) | Volume to Store | Comparison Distance | Comparison Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Punched Card | 0.178 | 0.00242 | 120 | 9,162,596,898 | 22,173,484 | 1630 Kilometers | Hong Kong to Ho Chi Mihn | 120 Blue <br> Whales |
|  | 0.007 | 0.005335 |  |  | 48,882,454 | 994 Miles |  |  |
| 9 Track Tape | 12.65 | 1.1339 | 178,257,920 | 6,168 | 6,994 | 78 Meter | 3 1/4 Tennis Courts end-to-end | Large African Eephant |
|  | 0.498 | 2.5 |  |  | 15,420 | 256 Feet |  |  |
| 5 1/4 Full Height HDD | 82.55 | 2.2679 | 640,000,000 | 1,718 | 3,896 | 142 Meter | 38 Story Building | Hippopotamus |
|  | 3.25 | 5 |  |  | 8,590 | 466 Feet |  |  |
| $\begin{aligned} & 3 \text { 1/2 IN 1TB } \\ & \text { HDD } \end{aligned}$ | 26.1 | 0.622 | 1,000,000,000,000 | 1 | 0.6220 | 2.6 CM | Cheesburger | Hard Back Book 350 Pages |
|  | 1.027 | 1.371 |  |  | 1.3710 | 1.027 IN |  |  |
| MicroSD | 1 | 0.0002 | 128,000,000,000 | 8 | 0.00160 | 83.2CM | 5 Credit Cards | 8 Fingernails (not the pinky) |
|  | 0.0393 | 0.001102311 |  |  | 0.00842 | 32.75 IN |  |  |

## Since 2007 the ability to generate data has exceeded existing capacity to store it

- A faster and larger storage capacity is required


## Storage Trends

- Spinning Hard Disks (HDD) are on the way out
- Advancements in capacity have stalled in recent years as drive manufacturers retool and reinvent for Solid State Drive (SSD)
- Capability for capacity reaching 10 's or 100 's of Gigabytes is easily achievable
- SSD technology is superior to HDD in every way (Speed, Capacity Potential, Durability)


## That's Nice, But How Does This Impact the Cloud, and the DC?

- Cloud will become more about storage capacity than processing power
- In the past, rack space was dominated by servers (4 to 1), in the future, storage racks will outnumber server racks (2 to 1)
- Single Chip Cloud Computing, with potential for 1,000+ cores will replace entire DC halls with 2 or 3 servers (for redundancy)



## DC and Cloud Impact

- Leading driver of data centre build is Cloud service offerings
- CPU technology has started a trend of increased cores, with decreasing energy consumption
- CPUs are more tolerant to higher heat than in the past
- The move from HDD to SSD further improves the state of the DC



## DC and Cloud Impact (Continued)

- HDD is one of the most sensitive components to heat in the DC (5c to 55c)
- SSD generates little heat of its own (no moving components) reducing the overall heat generated in the $D C$, and is highly tolerant of greater operating temperatures (0c to 70c)
- SSD utilizes 2 w to 8 w during idle and usage time; HDD consumes 10w to 12w
- Storage will take a larger footprint of data centre floor space


## DC's - The Next Convenience Store



- Modular and Micro Modular Data Centres are a reality now
- They can be rapidly deployed to any location with sufficient power
- Latency and user demand will drive the need for closer proximity Data Centres



## Thank you

